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Melatonin and circadian biology in human cardiovascular disease

Introduction

Heart rate, blood pressure, endothelial function and fibri-
nolytic activity, among other cardiovascular variables,
exhibit diurnal variations consistent with a circadian

rhythm [1]. Moreover, serious cardiovascular events also
appear to exhibit circadian patterns. Indeed, the incidence
of acute myocardial infarction, myocardial ischemia, car-
diac arrest, ventricular tachycardia and sudden death in

patients with heart failure all vary according to the time of
day [2]. It has been suggested that social and commercial
pressures, such as shift work, which opposes the �physio-
logical� temporal circadian order, may be factors underlying
chronic illnesses, such as cardiovascular disease [3, 4].
In many disease states (e.g. diabetes mellitus, hyperten-

sion), neurohumoral circadian rhythms are �chronically�
impaired and result in dyssynchrony of cellular cross talk in
different tissues [5]. The cardiovascular system actually
exhibits significant daily variation regarding physiological,

pathophysiological and molecular processes. Diurnal vari-
ations also affect gene and protein expression. An increas-
ing number of experimental and clinical studies have shown

that the coordination of these rhythmic processes plays a
fundamental role in organ function [6].

The existence of a circadian clock mechanism has
recently been documented in cardiomyocytes. This infor-
mation helps to explain the circadian rhythms in cardiac

physiology (e.g. heart rate, cardiac output) and pathophys-
iology (e.g. arrhythmias) [6, 7].
The internal �oscillator�, or control station regulating the

body�s circadian clock, is the suprachiasmatic nucleus, a

small group of cells (comprising approximately 70,000
neurons) located in the hypothalamus above the optic
chiasm [8]. The suprachiasmatic nucleus processes external

signals, such as ambient light information as well as inputs
from the brain to regulate a variety of cyclic functions
including body temperature, sleep/wake cycles and the

secretion of hormones such as melatonin [9]. This review
describes the current understanding of the role of melatonin
in modulation of circadian rhythms with particular focus
on cardiovascular disease.

Circadian rhythm and cardiovascular
function

The existence of a daily rhythm affecting heart rate, blood
pressure, platelet and endothelial function, among other

components of the cardiovascular system, has been known
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for several decades. Epidemiological studies reported a
morning peak regarding the incidents of cardiovascular
events, such as ischemic strokes, myocardial infarction,

sudden cardiac death and ventricular arrhythmias [10–12].
Circadian clocks exist in cardiomyocytes, vascular

smooth muscle cells and endothelial cells. Circadian clocks
within individual cells of the cardiovascular system have the

potential to influence cardiovascular function by allowing
anticipation of the onset of neurohumoral stimuli (e.g.
increased sympathetic nervous stimulation before awaken-

ing), thereby ensuring an appropriately rapid response. [6].
In the in vivo setting, a complex interplay occurs between
environmental influences and intrinsic mechanisms (i.e.

central and peripheral circadian clocks), which contributes
to changes in cardiovascular function over the course of a
given 24-hr period (Fig. 1). For example, day-to-night
differences in physical and mental activity appear to be the

major determinates of blood pressure circadian rhythms
[10, 13]. Diabetes mellitus, a major risk factor for the
development of heart disease in humans, is associated with

a phase shift in the cardiac circadian clock [14, 15]. Shift
workers have an increased incidence of cardiovascular
disease [16–18], which might be related to alterations in

cardiovascular intracellular circadian clock function.

There is a temporal incidence in adverse cardiovascular
events, including transient myocardial ischemia [19], myo-
cardial infarction [20], sudden cardiac death [21] and stroke

[22, 23]. These events typically occur more often in the early
morning hours, just after awakening. There are also second
more subtle peaks of these events in the late afternoon.
There are published reports supporting the view that the

timing of onset of adverse cardiovascular events is linked
directly to the intrinsic clock mechanism, as opposed to the
�stress� caused by awakening. Using creatine kinase MB

(CK-MB) as a marker of myocardial damage, the peak
incidence of acute myocardial infarction around 06:00 hr
and its coincidence with a reported chest pain is docu-

mented [24]. In another retrospective study of sudden
cardiac death on the Hawaiian island of Kauai [25], the
prevalence of sudden cardiac death peaked between 06:00
and 12:00 hr for native Kauaians and between 12:00 and

16:00 hr for recent Japanese visitors to the island, corre-
sponding to the early morning in Japan. Krantz et al. [26]
studied 63 patients with stable coronary artery disease using

a well-validated structured events diary and electrocardio-
graphic monitoring; the results of this study further
supported the idea that an intrinsic diurnal mechanism

influenced the timing of onset of adverse cardiovascular
events, possibly more than increased physical or mental
activity. Hu et al. [27] used a mathematical analysis of heart

beat dynamics to support the hypothesis that intrinsic
diurnal influences on cardiac control, as opposed to
extrinsic behavior, may be involved in the diurnal pattern
of adverse cardiac events in vulnerable individuals. In

addition to the morning peaks in CK-MB and reported
pain, Muller et al. [24] also observed a secondary peak in
the evening. Manfredini et al. [28], in a review on ischemic

stroke, noted a secondary peak in the evening in the
occurrence of myocardial infarction in patients with sleep
apnea [29].

Others factors involved in the development of cardio-
vascular disease are likewise temporally modulated. Endo-
thelial function, vascular tone, lipid metabolism, platelet

and leukocyte reactivity, and fibrinolysis all vary with the
time of day [30]. Scheer et al. [31] demonstrated a circadian
rhythm in the platelet function, while Brezinski et al. [32]
found that platelet aggregability is higher during the

morning hours.
Core molecular oscillators have been identified in both

the heart [33] and vascular tissue [34] encompassing both

the vascular smooth muscle and endothelial compartments.
Recent evidence has documented a role of molecular
oscillators in regulating cardiovascular physiology [35,

36]. The endothelium secretes low levels of tissue plasmin-
ogen activator (tPA) along with platelet inhibitors, prosta-
cyclin and nitric oxide [37, 38], which are also responsible
for regulating vascular tone [39] and blood pressure [40].

An early morning surge in blood pressure is accompanied
by a decline in endothelial function, as assessed by flow-
mediated vasodilation [41–43]; both phenomena coincide

with the clinically observed morning peak incidence in
thrombotic events [44]. The tendency of platelets to
aggregate, which can promote thrombogenesis, has sug-

gested a diurnal pattern of this process in humans.
However, aggregometry studies are conflicting and poten-

Fig. 1. The suprachiasmatic nucleus synchronizes peripheral
oscillators including those within the cardiomyocytes, vascular
smooth muscle cells and endothelial cells through a combination of
autonomic, behavioral, endocrine and genetics cues. Thus, the
network of peripheral circadian oscillators in vascular tissues likely
influences clock-dependent cardiovascular phenomenon, including
blood pressure (BP), heart rate (HR) and myocardial infarction
(MI).
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tially affected by artifact [30]. Other mediators of the
hemostatic system display diurnal variations, including
coagulation factors (II, VII, X and tissue factor pathology

inhibitor) [45–47]. The morning onset of myocardial
infarction may partly result from circadian variation of
fibrinolytic activity. Fibrinogen, the circulating precursor of
fibrin (a clot-stabilizing protein), displays a circadian

variation in humans [48].
Taken together, these data suggest that suprachiasmatic

nucleus-driven diurnal variations in autonomic stimulation,

coupled to the cardiomyocyte circadian clock-driven daily
fluctuations in responsiveness of the heart to autonomic
stimulation, act as major determinants of cyclic cardiovas-

cular functions [6]. Whether environmental modulation of
the synchronization of peripheral and central clocks con-
tributes to the development of cardiovascular disease has
not been established but is suspected. Loss of synchroni-

zation occurs when there are changes in feeding or sleep
patterns, and during exposure to light at abnormal times,
i.e. at night [49, 50]. Such dyssynchronization is seen in

patients with hypertension, diabetes mellitus, obesity and
shift workers, in whom there is an elevated risk of
cardiovascular disease [51, 52].

Specific links between the melatonin and
cardiovascular disease

The circadian pacemaker within the suprachiasmatic
nucleus triggers the pineal gland to produce a melatonin
increase at night [53]. The production of melatonin by the

pineal gland in vertebrates exhibits an unambiguous
circadian rhythm with its peak near the middle of the
scotophase and basal levels during the photophase. The

daily and seasonal melatonin rhythms are involved in �time
of day� and �time of year� signaling, and it is for this reason
that they are considered to serve as a bio-clock and

bio-calendar [54].
The amount of melatonin produced by the pineal gland

of mammals changes with the age of the animal. The
production of melatonin wanes with the aging process [55,

56]. In humans, melatonin production not only diminishes
with age [57] but is also significantly lower in many age-
related diseases, including cardiovascular disease [58–61].

Mounting evidence reveals that the rhythmicity of melato-
nin has a crucial role in a variety of cardiovascular
pathophysiological processes including anti-inflammatory,

antioxidant, antihypertensive and possibly antilipidemic
functions (Fig. 2).
Evidence gathered in the last 15 yr indicates that mela-

tonin influences multiple factors of the cardiovascular
function [62]. Patients with coronary artery disease have
low melatonin production rates, and blood melatonin
concentrations correlate with the severity of the disease,

i.e. greater reductions in melatonin production are observed
in patients with a higher risk of myocardial infarction and/
or sudden death [9, 62]. In addition, the use of b-
adrenoceptor blockers, which reduce melatonin synthesis
in the pineal gland, may also be responsible for low
melatonin levels in patients with coronary disease. Sto-

schitzky et al. [63] showed that beta-blockers decrease
pineal melatonin synthesis via a specific inhibition of

b1-receptors. Nathan et al. [64] demonstrated a dose-
dependent relationship between b1-receptor blockade and
the suppression of nocturnal plasma melatonin in humans.
Unexpectedly, however, Girotti et al. [65] did not observe a

significant difference in the urinary levels of 6-sulfatoxy-
melatonin (the chief hepatic metabolite of melatonin)
excretion in patients treated with b-adrenoceptor blocker

compared to levels in nontreated individuals. Lower
nocturnal melatonin concentrations may be the cause of
sleep disturbances which are well-known side effects of

b-adrenergic antagonists [9]. Several studies indicate that
sleep disorders occur more frequently in patients with
coronary than in noncoronary or normal subjects. As low

melatonin levels can be associated with sleep disturbances
[66, 67], at least in elderly patients, the low melatonin
secretion, reported in patients with coronary, could play a
causal role in the sleep disorders they experience [9].

Hypercholesterolemia and hypertension are also com-
mon consequences of aging. Oxidized low-density lipopro-
tein is a critical factor in the initiation and progression of

atherosclerosis and it contributes to endothelial dysfunction
and plaque destabilization through multiple mechanisms
[68]. People with high levels of low-density lipoprotein

cholesterol typically have low levels of melatonin. It has
been shown that melatonin suppresses the formation of
cholesterol by 38% and reduces low-density lipoprotein
accumulation by 42% in freshly isolated human mononu-

clear leukocytes [69]. Several in vitro studies have docu-
mented the antioxidant actions of melatonin on low-density
lipoprotein oxidation. According to Kelly and Loo [70],

melatonin inhibits oxidative low-density lipoprotein mod-
ification. Furthermore, Seegar et al. [71] demonstrated that
although melatonin itself appears to have little anti-

atherogenic activity, melatonin�s precursors and breakdown
products inhibit low-density lipoprotein oxidation, compa-
rable to vitamin E. Melatonin has been also shown to

depress plasma levels of total cholesterol and very low-
density lipoprotein cholesterol as well as the low-density
lipoprotein cholesterol subfraction in hypercholesterolemic

Fig. 2. Photic regulation of human physiological melatonin bio-
synthesis. RHT, Retinohypothalamic tract; SCN, Suprachiasmatic
nucleus; pre-GSN, preganglionic sympathetic neuron; SCG, supe-
rior cervical ganglia; post-GSN, postganglionic sympathetic
neuron.
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rats [72]. Melatonin may exert these effects by increasing
endogenous cholesterol clearance. In contrast, Abuja et al.
[73] claimed that melatonin did not prevent the oxidative

modification of low-density lipoprotein. Because of its
lipophilic nature, however, melatonin readily enters the
lipid phase of the low-density lipoprotein particles and
prevents lipid peroxidation [74]. Dominguez-Rodriguez

et al. [75] showed an association between nocturnal ele-
vated serum levels of oxidized low-density lipoprotein and
reduced circulating melatonin levels in patients with acute

myocardial infarction, while Tamura et al. [76] found that
melatonin treatment of peri- and postmenopausal women
cause a significant elevation of high-density lipoprotein

cholesterol without influencing total cholesterol levels.
These findings generally support the notion that melatonin
may lower total cholesterol and stimulate high-density
lipoprotein levels while reducing the oxidation of low-

density lipoprotein, changes that would generally be pro-
tective against cardiovascular disease [77].

The administration of melatonin reduces blood pressure

in normal [78], pinealectomized [79] and spontaneously
hypertensive rats [80], whereas pinealectomy leads to
hypertension in rats [81]. Individuals with hypertension

have lower melatonin levels than those with normal blood
pressure, and the administration of melatonin reduces
blood pressure. It has been shown that melatonin reduces

blood pressure in both normo- and hypertensive subjects
[82–85]. Melatonin has been shown to reduce the resistance
of the large arteries to blood flow in adult men [84] and
young women [83]. The administration of melatonin

reportedly reduces blood pressure as a consequence of
various mechanisms including a direct hypothalamic effect,
a reduction of catecholamine levels, relaxation of the

smooth muscle wall and, most importantly, as a result of
its antioxidant properties [9, 86, 87]. Additionally, it is
known that nitric oxide plays a key role in the maintenance

of vascular tone, which in turn influences blood pressure. A
relative nitric oxide deficiency has been documented in
different forms of hypertension [62]. Pechanova et al. [88]

demonstrated that melatonin reduces blood pressure sig-
nificantly and that this treatment enhanced nitric oxide
synthase activity, reduced oxidative stress and decreased
NF-jb. Finally, melatonin was also shown to reduce some

of the pathophysiological consequences of renovascular
hypertension because of its ability to function as an
antioxidant [89].

Several studies suggest that some immunological factors
play an important role in the initiation of inflammatory
processes that predispose to coronary artery disease.

Moreover, interactions exist between the endocrine and
the immune system [90]. In this context, melatonin plays an
essential role as a modulator of a large number of
inflammatory molecules [91, 92]. We have demonstrated

that light/dark variations in the production of endogenous
inflammatory markers in patients with coronary artery
disease might be related, at least in part, to day/night

fluctuations in melatonin circulating levels [93–96].
Melatonin and its metabolites have been widely tested

for their ability to attenuate the tissue damage resulting

from transient occlusion of the blood supply to organs
[97–99]. Salie et al. [100] reported that melatonin, via

inhibition of reactive oxygen species generation and
intracellular Ca2+accumulation, protects rat ventricular
myocytes against ischemia/reperfusion-induced morpho-

logic damage. Using a Langendorff rat heart preparation,
Tan et al. [101] found that when melatonin, infused
throughout the period of coronary artery occlusion and
after reopening of the vessel, highly significantly reduced

both premature ventricular contractions and the ventric-
ular fibrillation. Investigations have also confirmed the
beneficial effects of pharmacological doses of melatonin on

abnormal function and cardiac tissue damage resulting
from ischemia/reperfusion injury [102–104]. A significant
portion of melatonin�s antioxidant actions may derive

from its stimulatory effect on antioxidative enzymes
including superoxide dismutase, glutathione peroxidase,
glutathione reductase and glucose-6 phosphate dehydro-
genase as well as its ability to inhibit the pro-oxidative

inducible nitric oxide synthase [105, 106]. Additionally, a
number of early studies suggested that the reported
protective effects of melatonin are mediated via melato-

nin�s receptor-independent actions as a radical scavenger
[104, 107]. Recent investigations in patients with ST-
segment elevation myocardial infarction undergoing pri-

mary percutaneous coronary intervention confirmed a
relationship between melatonin concentrations and ische-
mia-modified albumin, a marker of myocardial ischemia.

Our data thus suggest that melatonin acts as a potent
antioxidant agent, reducing myocardial damage induced
by ischemia/reperfusion [108] (Fig. 3).

Fig. 3. As illustrated in this simplified figure, the events that lead to
molecular damage and cell death during ischemia/reperfusion in-
jury are complex. Considering the numerous intracellular actions of
melatonin as a direct free radical scavenger, as an indirect antiox-
idant because of its ability to stimulate antioxidative enzymes and
its effect on mitochondrial electron transport, this indole has a role
in reducing molecular damage and cell death in patients with
ST-segment elevation myocardial infarction.

Melatonin and cardiovascular pathophysiology
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Melatonin and cardiovascular disease:
genetic background

That disturbances of circadian rhythmicity are associated
with the risk of cardiovascular events is established [109],
but addressing these issues is challenging as the major

circadian hormone, i.e. melatonin, is modulated by several
variables including genetic and especially environmental
factors. A number of recent investigations have demon-

strated how alterations in the circadian melatonin rhythm
may be involved in adverse cardiovascular outcomes and
possibly also influence common manifestations of meta-

bolic disorders [110]. Up to 10% of the transcriptome might
be under the control of the circadian clock [111]. Under-
standing the specific contribution that melatonin in this
context may be assisted by the fact that costs of DNA

analysis have been reduced recently [112, 113].
The marked variability of melatonin production by the

pineal gland may be because of mutations in genes

encoding for critical enzymes involved in melatonin
biosynthesis [e.g. arylalkylamine N-acetyltransferase (AA-
NAT) and tryptophan hydroxylase 1 (TPH1)]. In the case

of the AANAT gene, eleven coding single-nucleotide
polymorphisms (SNPs) have been described, with six of
them having a similar function and five representing

missense mutations with one amino acid substituted for
another [114]. Hohjoh et al. [115] demonstrated a rela-
tionship between the SNP rs28936679 in the AANAT gene
and the delayed sleep-phase syndrome. Also, the SNP

rs10488682 located in the promoter region of TPH1 is
related with the synthesis of melatonin [116]. An impaired
maturation of the photoneuroendocrine system caused by

a genetic absence or mutation of these enzymes may cause
a lethal imbalance in the chemical interactions among
serotonin, progesterone, catecholamines and intracellular

calcium. This stresses the fact that a misfiring circadian
release of melatonin can lead to cardiovascular disease
because of abnormal levels of other hormones (e.g.
abnormally high levels of aldosterone influence blood

pressure through water retention) [117]. Melatonin levels
were reported to be significantly reduced in victims of the
sudden infant death syndrome compared to age-matched

controls with nonsudden infant death syndrome victims
[118]. It is hypothesized that a delayed ontogenesis of
melatonin is a challenge facing newborns who are at risk

for sudden infant death syndrome because of gene
mutations or immature cardiac responses [119]. Melatonin
deficiency may potentially increase electrical instability of

the heart during the sleep period. These observations
suggest that genetic screening in neonates at risk for
cardiac disorders might be important in the design-
protective strategies.

Two G protein-coupled membrane receptors for melato-
nin have been cloned and are identified as MTNR1A
(MT1) and MTNR1B (MT2) [120]. In mammals, these

melatonin receptors are expressed in the majority of the
central and peripheral tissues including the cardiovascular
system [121, 122]. These receptors share a high degree of

sequence homology with the G protein-coupled receptor 50
(GPR50), which plays a pivotal role in mediating the
intracellular effects of numerous neurotransmitters and

hormones, including melatonin [123]. There are nine coding
SNPs in the MTNR1A gene (5 missenses, 3 synonymous
and 1 insertion) and another nine coding SNPs in the

MTNR1B gene (7 missenses and 2 synonymous). These
SNPs may be associated with less-effective melatonin
receptors and specific patterns of expression, emphasizing
the possibility of novel cardiovascular syndrome pathways

and potential preventative therapies.
Two-stage approaches, genome-wide association fol-

lowed by selective SNP genotyping, have been adopted as

an efficient strategy for personalizing medicine by identify-
ing high cardiovascular risk individuals. A major limitation
is the modest number of melatonin-related markers

included in ongoing independent analyses, especially when
a large proportion of disease associations may well be
population specific, or are likely to be because of chance.
Finding genetic variants of the melatonin pathway linked to

obesity and prediabetes traits are patently associated with
cardiovascular disorders, including hypertension and ath-
erosclerosis, as results from the effects of SNPs within the

MTNR1B locus [124]. Recent studies on individuals carry-
ing the minor G allele of SNP rs10830963 in the MTNR1B
gene revealed that this melatonin receptor subtype is

associated with higher glucose levels and increased diabetes
risk [125–127]. Among a number of physiological varia-
tions, the SNP rs1562444 located in the 3¢-untranslated
region of MTNR1B could be associated with the rheuma-
toid arthritis by altering its appropriate expression or RNA
folding [128]. In addition, three genome-wide association
studies identified two SNPs in the MTNR1B (rs1387153,

rs10830963) predicting susceptibility to type 2 diabetes.
[129].
These may be good examples on how different genotypes

affecting the production of melatonin or the function of its
receptors could be useful to elicit cardiovascular disease
risk given the modest effects of common variants that

contribute to these complex traits.
The aim of ongoing studies is to identify gene polymor-

phisms that confer susceptibility to inflammation, varia-

tions in blood pressure or even those affecting the
therapeutic efficacy of specific cardiovascular drugs [130,
131]. Recently, two SNPs (rs10455872 and rs3798220) have
been identified at the locus encoding Lp(a) lipoprotein,

which are strongly associated with both an increased level
of Lp(a) lipoprotein and an elevated risk of coronary
disease [132]. There are also results, however, indicating

that SNPs in the melatonin-related receptor gene (GPR50)
might be associated with circulating triglyceride and high-
density lipoprotein levels [133], and additional findings

suggest that melatonin may inhibit the activity of lipopro-
tein lipase [134].
Finally, it is worth stressing that we have been assessing

the relationship between C-reactive protein polymorphisms,

i.e. 1059G>C, rs1800947 and MTNR1A (G166E,
rs28383653) to ascertain whether these two SNPs are
associated with an increased risk for acute myocardial

infarction. We have performed a case–control study in 300
consecutive patients with acute myocardial infarction and
250 healthy controls (unpublished data). For validation of

this association, we are presently examining larger subject
panels for an extended set of markers, including several

Dominguez-Rodriguez et al.
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genetic variants of the melatonin pathway. The information
of the new SNPs could be linked to advance cardiovascular
risk factors or at least to propose new ways to treat

circadian clock–related cardiovascular events. Moreover,
the relevance of the identified polymorphisms to protein
structure or function will be required to provide some
insights into the pathomechanism that might underpin

various cardiovascular syndromes.

Conclusions

Synchrony between external and internal circadian rhythms
and harmony among molecular fluctuations within cells are

essential for normal organ biology. Circadian clocks exist
within multiple components of the cardiovascular system.
These clocks have the potential of affecting multiple cellular
processes and, therefore, hold promise of modulating

various aspects of cardiovascular function over the course
the 24-hr cycle. Many aspects of cardiovascular physiology
are subject to diurnal variations, and serious adverse

cardiovascular events appear to be conditioned by the time
of day. The suprachiasmatic nucleus is responsible for the
control of circadian rhythms in peripheral tissues, acting via

neural and humoral signals such as melatonin.
Numerous cardiac conditions are a consequence of free

radical damage and processes involving an inflammatory

response [62, 74, 92, 135]. The beneficial effects of melato-
nin administration against these conditions are because of
its direct free radical scavenger activity and its indirect
antioxidant properties. Likewise, the results from many

investigations documented a role of melatonin against
inflammatory molecules in patients with acute coronary
syndrome indicating that this indoleamine has significant

beneficial immunomodulatory effects. Therefore, melatonin
rhythmicity appears to have crucial roles in various
cardiovascular functions as an antioxidant, an anti-inflam-

matory agent chronobiotic and possibly as an epigenetic
regulator [136].
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